
Continuous Delivery with
Containers

Elizabeth K. Joseph
@pleia2

All Things Open 2018

Elizabeth K.
Joseph
@pleia2

lyz@princessleia.com

Spent the past 2 years working
containers with Apache Mesos
and Kubernetes

4 years working on CI/CD for
OpenStack

10+ years in Linux systems
administration and engineering
roles

Author of The Official Ubuntu
Book and Common OpenStack
Deployments

Definition: Continuous Delivery

Continuous Delivery (CD) is a software engineering approach
in which teams produce software in short cycles, ensuring
that the software can be reliably released at any time.

Via https://en.wikipedia.org/wiki/Continuous_delivery

https://en.wikipedia.org/wiki/Continuous_delivery

Traditional Delivery

Months (or years!) between releases

Customers don’t see new features quickly

Developers lose track of features they worked on

Goal: A Modern Release Process with CD

Week 1: Project planning and release

Develop > Test > Stage > Release

Week 2: Customer Feedback and release

Develop > Test > Stage > Release

Week 3: Customer Feedback and release

Develop > Test > Stage > Release

...

The CI/CD Pipeline

git push

git repository CI/CD staging production

artifacts

image

test

How?

Run in containers!

CC BY 2.0: https://www.flickr.com/photos/rubbermaid/6909787969/

https://www.flickr.com/photos/rubbermaid/6909787969/

Organize everything efficiently!

CC BY-ND 2.0: https://www.flickr.com/photos/96227967@N05/24954030641/

https://www.flickr.com/photos/96227967@N05/24954030641/

Sidebar:
Can’t I just use VMs for

testing?

Sure! But consider...

● VMs take longer to provision
● You may not need all they

provide (kernel, system
libraries…)

● An identical container image
is simple to run in
development, testing, staging
and production

Bare Metal/VMs vs. Containers

Traditional Datacenter

Siloed servers

Low utilization

12-15% for bare metal

30% for virtual machines

Containerization Platform

Integrated cluster (service
discovery, authentication, etc)

Workload multiplexing on the same
machines

Does everything go in containers? Up to you.

Everything Running in Containers

Security &
Governance

Container
Orchestration

Monitoring &
Operations

User Interface &
Command Line

GitLab Jenkins Microservice Microservice Microservice

Microservice Artifactory Microservice Prometheus Microservice

Kubernetes, Docker Swarm, Apache Mesos

Services & Containers

Linux ServerLinux Server Linux Server Linux Server

Bare Metal, OpenStack, AWS, Azure, GCP

Everything Running in Containers

Traditional Datacenter Containerization Platform

Jenkins-1

Jenkins-2

GitLab

Tests

Tests

Legacy Infrastructure + Containers

Continue running your legacy
systems on Bare Metal or VMs

Send all tests to a new,
independent containerization
platform

Tests

Tests

Tests

GitLab

Legacy Infrastructure + hosted + Containers

Continue running your
legacy systems on Bare
Metal or VMs

Send all tests to a new,
independent containerization
platform

Tests

Tests

Tests

Jenkins

Fully hosted with GitHub

Hosted CI/CD system

CircleCI

Travis CI

TeamCity

...

Test on cloud-hosted
Kubernetes service:

● Google Kubernetes
Engine (GKE)

● Azure Kubernetes
Service (AKS)

● Amazon Elastic
Container Service for
Kubernetes (Amazon
EKS)

Fully hosted with GitLab.com

Use GitLab.com (hosted GitLab) for
repository, artifact store, test
runner

And connect it to a cloud-hosted
Kubernetes service:

● Google Kubernetes Engine (GKE)
● Azure Kubernetes Service (AKS)
● Amazon Elastic Container

Service for Kubernetes (Amazon
EKS)

Or a combination of these!

Walkthrough:

Setting up a pipeline on
 with Auto DevOps

and Kubernetes
Visit https://docs.gitlab.com/ee/topics/autodevops/quick_start_guide.html

https://docs.gitlab.com/ee/topics/autodevops/quick_start_guide.html

Select a project template

Set up project with template

Enable Kubernetes in Google Cloud

“Add Kubernetes Cluster”

Create new Cluster on GKE

Enter the details for your Kubernetes cluster

The cluster exists!

Enable Applications

Enable GitLab Auto DevOps

View pipelines

A pipeline!

What do these all mean?

Via: https://docs.gitlab.com/ee/topics/autodevops/quick_start_guide.html#deploying-the-application

https://docs.gitlab.com/ee/topics/autodevops/quick_start_guide.html#deploying-the-application

Navigate to deployed application

Simple site in production!

Metrics! Via Prometheus in the GitLab UI

Make a change

Tests run again!

View console details of jobs running

Successfully deployed!

Advanced CD Strategies

Advanced Strategies: Canary Deployments

“Canary release is a technique to reduce the risk of introducing a
new software version in production by slowly rolling out the change
to a small subset of users before rolling it out to the entire
infrastructure and making it available to everybody.”

https://martinfowler.com/bliki/CanaryRelease.html

https://martinfowler.com/bliki/CanaryRelease.html

Advanced Strategies: Blue/Green Deployments

“One of the challenges with automating deployment is the cut-over
itself, taking software from the final stage of testing to live
production. You usually need to do this quickly in order to minimize
downtime. The blue-green deployment approach does this by ensuring
you have two production environments, as identical as possible. At
any time one of them, let's say blue for the example, is live. As
you prepare a new release of your software you do your final stage
of testing in the green environment. Once the software is working in
the green environment, you switch the router so that all incoming
requests go to the green environment - the blue one is now idle.”

https://martinfowler.com/bliki/BlueGreenDeployment.html

https://martinfowler.com/bliki/BlueGreenDeployment.html

Advanced tooling exists!

Many containerization platforms allow for enough deployment
strategies to define a canary or blue/green strategy
yourself.

Tooling like Vamp can also help.

https://vamp.io/documentation/installation/v1.0.0/kubernetes/

https://vamp.io/documentation/installation/v1.0.0/dcos/

https://vamp.io/documentation/installation/v1.0.0/kubernetes/
https://vamp.io/documentation/installation/v1.0.0/dcos/

Questions?
Elizabeth K. Joseph

@pleia2

lyz@princessleia.com

https://princessleia.com/

mailto:lyz@princessleia.com
https://princessleia.com/

