
FOSSCON
25 August 2018

Continuous Delivery with 
Containers
Elizabeth K. Joseph
@pleia2



2

❏ Developer Advocate at Mesosphere
❏ 10+ years in Linux systems administration 

and engineering roles
❏ 4 years working on CI/CD for OpenStack
❏ Author of The Official Ubuntu Book and 

Common OpenStack Deployments

Elizabeth K. Joseph

@pleia2



3

Continuous Delivery (CD) is a software engineering approach in which teams 
produce software in short cycles, ensuring that the software can be reliably 
released at any time.

Via https://en.wikipedia.org/wiki/Continuous_delivery

Definition: Continuous Delivery

@pleia2

https://en.wikipedia.org/wiki/Continuous_delivery


4@pleia2

Goal: A Modern Release Process with CD

WEEK 1 WEEK 2 WEEK 3 WEEK 4

PROJECT 
PLANNING

Customer 
Feedback

Customer 
Feedback

Customer 
Feedback

RELEASE 1 RELEASE 2 RELEASE 3 RELEASE 4

Better products 
through a repeatable 
release cadence

Happier developers 
through continuous 
feedback 

Dev

Test Stage

Release Dev

Test Stage

Release
Dev

Test Stage

Release Dev

Test Stage

Release



Run everything in containers!

CC BY 2.0: https://www.flickr.com/photos/rubbermaid/6909787969/



Organize everything efficiently!

CC BY-ND 2.0: https://www.flickr.com/photos/96227967@N05/24954030641/

https://www.flickr.com/photos/96227967@N05/24954030641/


7@pleia2

Utilization

Containerization Platform
automated schedulers, workload multiplexing 

onto the same machines

Typical Datacenter
siloed, over-provisioned servers,

low utilization (12-15% bare metal, 30% for VMs)

Jenkins-2

microservice

nginx

Jenkins-1

GitLab



8

Supporting various pipelines

@pleia2

Jenkins JenkinsJenkins

GitLab Artifactory

TravisCI TravisCI TravisCI

GitHub

Proprietary Artifact 
Registry

Team A

Artifactory

GitLab

Team B Team C Team D Team E Team F

Artifactory Artifactory

GitHub



9@pleia2

Security &
Governance

Container 
Orchestration

Monitoring & 
Operations

User Interface & 
Command Line

GitLab Jenkins Marathon Cassandra Flink

Spark Artifactory Kafka MongoDB Spinnaker

DC/OS

Services & Containers

ANY INFRASTRUCTURE



10@pleia2

Docker

Use: Container

Why Docker?

● De facto standard that developers are familiar with
● Portable Dockerfiles for sharing image build source
● Ease of use for building, storing, and deploying containers



11

Apache Mesos

@pleia2

Use: The primary resource manager and 
negotiator

Why Mesos?

● 2-level scheduling
● Fault-tolerant, battle-tested
● Scalable to 10,000+ nodes
● Created by Mesosphere founder @ UC Berkeley; used in 

production by 100+ web-scale companies [1]

[1] http://mesos.apache.org/documentation/latest/powered-by-mesos/

http://mesos.apache.org/documentation/latest/powered-by-mesos/


12

DC/OS

@pleia2

● Resource management
● Task scheduling
● Container orchestration
● Logging and metrics
● Network management
● “Universe” catalog of pre-configured apps (including Jenkins, 

GitLab, Artifactory…), browse at 
https://mesosphere.com/service-catalog

● And much more https://dcos.io/

https://mesosphere.com/service-catalog
https://dcos.io/


13

DC/OS Web-based UI

@pleia2



14

DC/OS CLI

$ dcos cluster list

$ dcos node

$ dcos package install jenkins

$ dcos node ssh --master-proxy --leader

https://docs.mesosphere.com/latest/cli/

@pleia2

https://docs.mesosphere.com/latest/cli/


15@pleia2

The Pipeline

Jenkins

GitLab image registry

Marathon schedulerGitLab git repository Marathon-lb serving 
website via port 80

Continuous Delivery Pipeline

git push

Apache Mesos & DC/OS



16

CI/CD Demo
Using Jenkins, the Jenkins+Mesos plugin, and 
GitLab to test and deploy an nginx-based website.

https://github.com/dcos/demos/tree/master/cicd

@pleia2

https://github.com/dcos/demos/tree/master/cicd


17

Advanced 
Strategies!

@pleia2



18

Canary and Blue/Green Deployments
Canary

“Canary release is a technique to reduce the risk of introducing a new software version in production by 
slowly rolling out the change to a small subset of users before rolling it out to the entire infrastructure and 
making it available to everybody.” https://martinfowler.com/bliki/CanaryRelease.html

Blue/Green

“One of the challenges with automating deployment is the cut-over itself, taking software from the final 
stage of testing to live production. You usually need to do this quickly in order to minimize downtime. The 
blue-green deployment approach does this by ensuring you have two production environments, as identical 
as possible. At any time one of them, let's say blue for the example, is live. As you prepare a new release of 
your software you do your final stage of testing in the green environment. Once the software is working in 
the green environment, you switch the router so that all incoming requests go to the green environment - the 
blue one is now idle.” https://martinfowler.com/bliki/BlueGreenDeployment.html

@pleia2



19

Marathon

The Marathon scheduler in DC/OS has an API that can be called by Jenkins jobs to specify how a 
deployment is completed. Since it’s a custom configuration, you can be as specific as you need, but it does 
make it a more complicated approach.

Get started at https://mesosphere.github.io/marathon/docs/blue-green-deploy.html

@pleia2

Blue/Green, Canary: Marathon

https://mesosphere.github.io/marathon/docs/blue-green-deploy.html


20

Vamp

This is can be simplified by using the open source Vamp tooling. Vamp easily hooks into DC/OS, leveraging 
your existing Marathon scheduler but with specific definitions around other types of deployments.

Vamp is available in the DC/OS Universe catalog.

Get started at https://vamp.io/documentation/how-vamp-works/v0.9.5/architecture-and-components/

Watch in action on DC/OS in “Doing Real DevOps with DC/OS” by Julien Stroheker of Microsoft at MesosCon 
EU back in October 2017: https://www.youtube.com/watch?v=hNAWHZhMNf8

@pleia2

Blue/Green, Canary: Vamp

https://vamp.io/documentation/how-vamp-works/v0.9.5/architecture-and-components/
https://www.youtube.com/watch?v=hNAWHZhMNf8


21

Elizabeth K. Joseph

lyz@princessleia.com / ejoseph@mesosphere.com

Twitter: @pleia2

Demo: https://github.com/dcos/demos/tree/master/cicd

Questions?

@pleia2

https://github.com/dcos/demos/tree/master/cicd

